DRAFT

Fire Regime Condition Class (FRCC) Interagency Handbook Reference Conditions

Modeler: Ron Masters Date: 5-12-04 PNVG Code: XTMB1+

Potential Natural Vegetation Group: Cross Timbers

Geographic Area: Central parts of Texas, Oklahoma and Kansas

Description: Dominated by Post oak (*Quercus stellata*) and to a lesser extent blackjack oak (*Q. marilandica*), in the eastern extent hickory (*Carya* spp.) and black oak (*Quercus velutina*) may be a constituent and also occasionally elm (*Ulmus americana*). Open understory and openings are dominated by big bluestem (*Andropogon gerardii*), little bluestem (*Schizachyrium scoparium*) and Indiangrass (*Sorghastrum nutans*) and various annual and perennial forbs with prevalence dictated by stand density and overstory canopy cover. Cross Timbers is within a landscape matrix of tallgrass prairie.

Fire Regime Description: Fire regime group I, with frequent surface fires.

Vegetation Type and Structure

Class*	Percent of	Description		
	Landscape	·		
A: post replacement	15	Oak reproduction (often coppice) to 15' tall. Community of forbs and perennial grasses. More persistent on shallow soils. Openings may be small to extensive and have scattered live trees.		
B : mid-seral closed	14	Mid-seral with closed canopy (>60%) sapling to pole-sized oak with little or no herbaceous understory. Often coppice origin.		
C: mid- seral open	29	Mid-seral woodland/savanna overstory with perennial grasses. Cover <60%.		
D : late- seral open	32	Mid-seral woodland/savanna oak overstory with perennial grasses. Cover <60%.		
E: late- seral closed	10	Late-seral, closed canopy (>60%) oak dominated overstory community. Little to no herbaceous cover and few shrubs.		
Total	100	•		

^{*}Formal codes for classes A-E are: AESP, BMSC, CMSO, DLSO, and ELSC, respectively.

Fire Frequency and Severity

Fire Frequency and Severity							
Fire Severity	Fire Frequency (yrs)	Probability	Percent, All Fires	Description			
Replacement Fire	208	.005	4	Late growing season fires occurring in drought years			
Non-Replacement Fire	3.8	.26	96	Primarily surface fire in all classes. Some mosaic fire.			
All Fire Frequency*	3.7	.27	100				

*All Fire Probability = sum of replacement fire and non-replacement fire probabilities. All Fire Frequency = inverse of all fire probability (previous calculation).

References

Abrams, M. D. 1992. Fire and the development of oak forests. BioScience. 42:346-353.

Anderson, R. C. 1972. Prairie history, management and restoration in southern Illinois. Pages 15-22 in J. Zimmerman, ed., Proc. Second Midwest Prairie Conf. Madison, WI 242 pp.

Anderson, R. C. and L. E. Brown. 1986. Stability and instability in plant communities following fire. Amer. J. Bot. 73: 364-368.

Axelrod, D. I. 1985. Rise of the grassland biome, central North America. Bot. Rev. 163-201.

Bidwell, T. G. and D. M. Engle. 1992. Relationship of fire behavior to tallgrass prairie herbage production. J. Range Manage. 45: 579-584.

Brown, James K.; Smith, Jane Kapler, eds. 2000. Wildland fire in ecosystems: effects of fire on flora. Gen. Tech. Rep. RMRS-GTR-42-vol. 2. Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 257 p.

Box, T. W. 1967. Brush, fire and West Texas rangeland. Tall Timbers Fire Ecol. Conf. Proc. 6: 7-19.

Bragg, T. B. and L. C. Hulbert. 1976. Woody plant invasion of unburned Kansas bluestem prairie. J. Range Manage. 29: 19-23.

Dyksterhuis, E. J. 1948. The vegetation of the western cross timbers. Ecol. Monogr. 18: 327-376.

Dyksterhuis, E. J. 1957. The savanna concept and its use. Ecology 38:435-442.

Engle, D. M., T. G. Bidwell, and R. E. Masters. 1996. Restoring Cross Timbers ecosystems with fire. Trans. No. Am. Wildlife and Natur. Res. Conf. 61:190-199.

Engle, D. M. and J. F. Stritzke. 1995. Fire behavior and fire effects on eastern red cedar in hardwood leaf-litter fires. Int. J. Wildland Fire. 5: 135-141.

Hoagland, B. W. 2000. The vegetation of Oklahoma: a classification for landscape mapping and conservation planning. Southwestern Naturalist 45:385-420.

Hoagland, B. W., I. H. Butler, F. L. Johnson, and S. Glenn. 1999. The Cross Timbers. In: R. C. Anderson, J. S. Fralish, and J. M. Baskin (eds). Savannas, Barrens, and rock outcrop plant communities of North America. Cambridge University Press, New York.

Irving, W. 1935. A tour of the prairies. Harlow Publ., Oklahoma City, OK. 252 pp.

Johnson, F. L. and P. G. Risser. 1975. A quantitative comparison between an oak forest and an oak savannah in central Oklahoma. Southwest. Naturalist 20: 75-84.

Kennedy, R. K. 1973. An analysis of selected Oklahoma upland forest stands including both overstory and understory components. Ph.D. Dissertation, University of Oklahoma, Norman.

Komarek, E. V. 1965. Fire ecology-Grasslands and man. Proc. Ann. Tall Timbers Fire Ecol. Conf. 4: 169-220.

_____. 1974. Effects of fire on temperate forests and related ecosystems: Southeastern United States. Pages 252-277 in T.T. Kozlowski and C.E. Ahlgren, eds., Fire and ecosystems. Academic Press, New York, NY. 542 pp.

Penfound, W. T. 1962. The savanna concept in Oklahoma. Ecology 43: 774-775.

Rice, E. L. and W. T. Penfound. 1959. The upland forests of Oklahoma. Ecology 40: 593-608.

Sapsis, D. B. and J. B. Kauffman. 1991. Fuel consumption and fire behavior associated with prescribed in sagebrush ecosystems. Northwest Sci. 65: 173-179.

Schmidt, Kirsten M, Menakis, James P., Hardy, Colin C., Hann, Wendel J., Bunnell, David L. 2002. Development of coarse-scale spatial data for wildland fire and fuel management. Gen. Tech. Rep. RMRS-GTR-87. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 41 p. + CD.

Rebertus, A. J. and B. R. Burns. 1997. The Importance of gap processes in the development and maintenance of oak savannas and dry forests. Journal of Ecology 85:633-645.

Smeins, F. 1994. Cross timbers-Texas-Little bluestem-post oak. SRM 732. Pages 107-108 in T,N, Shiftlet, ed. Rangeland cover types of the United States. Soc. Range Manage., Denver, CO. 152 pp.

Trollope, W. S. W. 1984. Fire in savannah. Pages 151-175 in P. de V. Booysen and N.M. Tainton, eds., Ecological effects of fire in South African ecosystems. Springer-Verlag, New York, NY. 426 pp.

U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (2002, December). Fire Effects Information System, [Online]. Available: http://www.fs.fed.us/database/feis/.

White, A. S. 1986. Prescribed burning for oak savanna restoration in central Minnesota. Res. Pap. NC-266, USDA For. Serv., Washington, D.C. 12.pp.

Wright, H. A. and A. W. Bailey. 1982. Fire ecology. John Wiley and Sons, New York, NY. 501 pp.

PERSONAL COMMUNICATION (if applicable):

David M. Engle, Professor, Oklahoma State University Terrance Bidwell, Professor, Oklahoma State University Sam Fuhlendorf, Assistant Professor, Oklahoma State University

VDDT File Documentation

Include screen captures (print-screens) from any of the VDDT graphs that were used to develop reference conditions.

